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ABSTRACT

Android, the #1 mobile app framework, enforces the single-GUI-
thread model, in which a single UI thread manages GUI rendering
and event dispatching. Due to this model, it is vital to avoid blocking
the UI thread for responsiveness. One common practice is to offload
long-running tasks into async threads. To achieve this, Android pro-
vides various async programming constructs, and leaves developers
themselves to obey the rules implied by the model. However, as our
study reveals, more than 25% apps violate these rules and introduce
hard-to-detect, fail-stop errors, which we term as aysnc program-
ming errors (APEs). To this end, this paper introduces APEChecker,
a technique to automatically and efficiently manifest APEs. The
key idea is to characterize APEs as specific fault patterns, and syn-
ergistically combine static analysis and dynamic UI exploration to
detect and verify such errors. Among the 40 real-world Android
apps, APEChecker unveils and processes 61 APEs, of which 51 are
confirmed (83.6% hit rate). Specifically, APEChecker detects 3X more
APEs than the state-of-art testing tools (Monkey, Sapienz and Stoat),
and reduces testing time from half an hour to a few minutes. On a
specific type of APEs, APEChecker confirms 5X more errors than the
data race detection tool, EventRacer, with very few false alarms.
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1 INTRODUCTION

Most modern GUI frameworks such as Swing [48], SWT [79], An-
droid [25], Qt [68], WxErlang [84], and MacOS Cocoa [7] enforce the
single-GUI-thread model, in which one single UI thread instanti-
ates GUI components and dispatches events. Specifically, UI thread
fetches system or user events off an event queue, and dispatches
them either to a responsible app component’s handler or to a UI
widget’s event handler. These handlers run on the UI thread and
exclusively update GUISs if necessary.

Due to this single-GUI-thread model, it is vital to avoid block-
ing the UI thread. Therefore, most GUI frameworks recommend
to offload intensive tasks (e.g., network access, database queries)
to async threads (i.e., background threads). Take Android devel-
opment framework (ADF) as an example, it provides many async
programming constructs (e.g., AysncTask, Thread, AsyncTaskLoader,
IntentService) to achieve this goal.

Like other frameworks, ADF leaves developers themselves to
properly handle the interactions between these async threads and
the UI thread — obey the rules implied by the single-Ul-thread
model. However, our investigation on 930 apps that use async
constructs shows, more than 25% apps violate these rules, and
introduce fail-stop bugs. For example, if a worker thread directly
updates the text displayed on the UI thread, the app will crash.
Another example is, when an async thread finishes its background
task, and tries to send a Ul update event to a GUI component.
Before the update takes effect, if the user rotates the screen, the UI
thread will destroy and recreate that GUI component. By default,
the update event is routed to the destroyed GUI rather than the
newly created one, which may crash the app. In this paper, we term
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such fatal programming errors that violate the rules implied by the
single-Ul-thread model as async programming errors (APEs).

Such bugs in Android are not easy to detect manually, due to (1)
they usually reside in the code of handling interactions between
Ul thread and async threads, which can be rather complicated for
manual analysis; (2) they can only be triggered at the right states of
GUI components (e.g., activity, fragment) with complicated lifecy-
cle [21, 30]; (3) they have to be triggered at right thread scheduling,
while the execution time of async threads is affected by the task
and its running environment (e.g., network stability, system load).

Even worse, existing bug detection techniques are ineffective for
such bugs. First, most GUI testing techniques, e.g., random test-
ing [39, 57], search-based testing [58, 60], and model-based test-
ing [2, 3, 8, 78, 85], are designed for functional testing in general.
They aim at enumerating all possible event sequences (GUI-level
events in particular) to manifest bugs, which is unscalable and
time-consuming. Additionally, they mainly aim at improving code
coverage, which may not be sufficient for exhibiting APEs — re-
quire specific event sequences with appropriate lifecycle states and
thread scheduling. Second, static analysis tools, e.g., Lint [35], Find-
Bugs [19] and PMD [67], although scalable, only enforce simple
rules (syntax or trivial control/data-flow analysis) to locate suspi-
cious bugs. For example, Lint declares it can find “WrongThread" er-
rors (one type of APEs) [24]. However, as our evaluation in Section 5
demonstrates, Lint incurs a number of false negatives — failing to
detect those sophisticated “WrongThread" errors as well as other
types of APEs. Third, other fault detection techniques [10, 45, 59, 88]
(e.g., data race detection) have only tackled parts of APEs. To sys-
tematically tackle APEs, we conducted a formative study on 2097
Android apps to understand them. First, we find the async con-
structs are indeed widely used in 48.6% apps, and AysncTasks and
Threads account for the majority. Second, we identified 3 async pro-
gramming rules (see Section 2.2) implied by the single-GUI-thread
model by analyzing Android docs, technical posts and previous
fault studies on async programming. Third, from 1019 apps that
use async constructs, we found that developers do violate these
rules and introduce APEs. We collected 375 real APEs, involving 9
exception types (thrown from apps), e.g., CalledFromWrongThread,
lllegalStateException, BadTokenException, etc.

Informed by the above results, we develop an approach APEChecker.
It first characterizes 3 fault patterns from 375 issues based on the
3 rules, and synergistically combines static analysis and dynamic
UI exploration to efficiently manifest APEs. Specifically, it encodes
the fault patterns into a static analyzer, locates suspicious APEs
in the app code, generates a set of program paths that can reach
the faulty code, maps program traces to real event sequences with
appropriate environment, and finally verify these errors on the app.

We evaluate APEChecker on a set of 40 real-world Android apps,
and compare it with three state-of-the-art GUI testing tools (Mon-
key [39], Sapienz [60], and Stoat [78]), and two fault detection tools
(Lint [35] and EventRacer [10]). The results show (1) APEChecker
unveils and successfully processes 61 APEs, of which 51 can be
reproduced (83.6% hit rate) with real tests; (2) APEChecker detects
3X more APEs than the testing tools, and reduces detection time
from half an hour to a few minutes; and (3) within comparable
analysis time, APEChecker detects 5X more APEs than EventRacer
with very few false positives.
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Figure 1: Single-GUI-thread model of Android and its three
basic rules.

To summarize, this paper makes the following contributions:

e We conduct a formative study on 2097 Android apps to investi-
gate APEs, and identify three async programming rules implied
by the single-GUI-thread model.

e We develop APEChecker, a technique that synergistically com-
bines static analysis and dynamic UI exploration, to efficiently
detect and verify APEs.

o We evaluate APEChecker on 40 real-world apps, and clearly demon-
strate its effectiveness over the state-of-the-art testing and other
fault detection techniques on APEs.

2 ASYNC PROGRAMMING ERRORS

2.1 Async Programming in Android

Fig. 1 depicts the single-GUI-thread model of Android. The Ul thread
maintains a MessageQueue, and its Handler enqueues system or UI
events into this queue. These events come from app components
(e.g., Broadcast Receivers, Services) or GUIs (e.g., Activity and its associ-
ated visible components like Dialogs or Fragments). The UI thread’s
Looper dequeues events in a sequential order and dispatches them to
the Handler for processing. The Ul thread invokes the corresponding
event handler w.r.t. an event and updates GUIs if necessary.

ADF provides various async programming constructs [23]. There
are four typical constructs, ie., AysncTask, Thread, AsyncTaskLoader
and IntentService. Among them, AsyncTask allows one to perform
short background operations and publish results on the UI thread;
Thread is inherited from Java, and executes tasks in the background;
AsyncTaskLoader utilizes AysncTask to perform async data loading,
and has similar callbacks as AsyncTask, but it is lifecyle aware: ADF
binds/unbinds the worker thread according to GUI’s lifecyle. In-
tentService handles async requests in an async thread, and sends
the results to the UI thread vis a Broadcast Receiver. Fig. 2 illustrates
the use of AysncTasks in ADSdroid [15], it starts two async threads,
i.e., SearchByPartName (Lines 9-22) and DownloadDatasheet (Lines
34-49) to search electronic components’ datasheet, and download
from a remote server if requested. The activity SearchPanel (Lines
2-23) searches for the result with user input in the doInBackground,
showing a progress dialog in onPreExecute before searching, and
dismisses it via onPostExecute. The results are shown in a ListView
of the activity PartList (Lines 25-50), in which users can click any
matched item (Lines 28-32) for downloading.

However, there are two APEs (Lines 17 and 46), neither of which
has been covered by developers. The root causes for these two APEs
are similar. When users rotate the screen right after the start of the
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1 | // the acitivty that shows the search panel

2 | public class SearchPanel extends Activity{

3 ProgressDialog mSearchDialog;

4 public void searchByPartName (View view) {

5 mSearchDialog = new ProgressDialog (this);

6 new SearchByPartName (searchMode , partName) . execute () ;

7

8 // AsyncTask to search parts

9 private class SearchByPartName exte AsyncTask <...> {

10 protected ArrayList<Part> dolnBackground(Void...) {

11 // other stuffs A

12 return Search. searchB/yP{rlName(partName ,mode) ;

13

14 protected void onPostExecute (ArrayList<Part> result) {

15 super.onPostExecute(result);

16 //mSearchDialog is shown in onPreExecute()

17 | iSearchbislog dmmiss(n

18 if (result T ) {

19 Intent intent = new Intent(SearchPanel. this,

PartList.class);

20 intent.putExtra(PartList .PARTS, result);

21 startActivity (intent);

22

23 |} @

24 | // the activityNgthat shows the list of matched Parts

25 | public class PartList extends ListActivity{

26 ProgressDialog mDownloadDialog;

27 // the event handler for clicking list item

28 protected void onListItemClick (...) {

29 Part selectedPart = new Part(...);

30 mDownloadDialog = new ProgressDialog (this);

31 new DownloadDatasheet().execute(selectedPart);

32 }

33 // AsyncTask to download fhe data sheet

34 private class DownloadQAtasheet extends AsyncTask <...>{

35 protected String dolnBackground(Part... parts) {

36 Part selectedPart = parts[OJ/{

37 String fileName = fileNameZorPart(selectedPart);

38 URLConnection pdfConnectioh = selectedPart.
gcthfConncction();/@

39 pdfConnection.connect (),

40 // fetch data from/nelwork and update progress

41 return fileName; /

42 >

43 protected void onPostExecute(String result) {

44 super.onPostExecute (result);

45 // mDownloadDialog is shown in onPreExecute()

46 mDownloadDialog. dismiss (>

47 if (result T= nu

48 openPDF(result);

49

50 |}

Figure 2: Motivating Example

aysnc tasks SearchByPartName and DownloadDatasheet but before
they finish (i.e., before the execution of onPostExecutes), the app
will crash when mSearchDialog (Line 17) and mDownloadDialog (Line
46) are dismissed. Because the rotation will destroy the current
activity and create a new one, but the dialogs were attached to the
original one, which does not exist anymore. This leads to a fatal
BadTokenException. We can see the right timing and lifecycle states
are crucial to manifest these APEs. This paper aims at tackling such
hard-to-detect errors.

2.2 Formative Study

To understand APEs, we conducted a formative study to investigate
the following questions. This enables our problem definition in
Section 2.3 and fault pattern analysis in Section 3.1.

Q1: Are async constructs widely-used by Android developers to
follow the single-GUI-thread model? To answer this, we focus on
the four typical constructs introduced in Section 2.1, and investigate
2097 open-source Android apps from F-droid to observe the use
of these constructs since F-droid is one of largest Android app
repositories, which covers diverse application categories; and all
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apps are open-source and maintained on Github, Google Code, etc.
We use Soot [81], a static analysis tool, to identify aysnc constructs.
Answer: Async constructs are widely-used by Android developers.
We found 1019 out of 2097 apps use async constructs (account for
48.6%). Among 1019 apps, 2968 AsyncTasks, 1248 Threads, 286 In-
tentServices, and 35 AsyncTaskLoaders are used. AsyncTask and Thread
account for the majority, which also conforms to prior work [53, 54].
Q2: Are there any basic rules implied by the single-GUI-thread
model that Android developers should obey in async program-
ming? Are they common to other GUI frameworks? To answer
this, we conducted a thorough and careful inspection on (1) An-
droid docs and APIs [23], including the principle of single-GUI-
thread model [40], various async programming constructs [27, 32—
34, 37, 38, 41, 42], GUI components [21, 28, 30, 36, 43], etc; and (2)
technical posts filtered from Stack Overflow (the largest developer
Q&A community) by the keywords “Android” plus the names of
async constructs, tutorials on async programming [13]; and (3) fault
studies on Android [18, 46, 55, 86].

Answer: We identified 3 async programming rules (Fig. 1 annotated
these rules as R1, R2 and R3), which are also common to other
modern GUI frameworks.

® Rule 1 (Async threads should not update GUI objects): Since
Android UI toolkit is not thread-safe, the single-GUI-thread model
requires that async threads should not directly manipulate GUI ob-
jects. GUI objects include visible components (e.g., update a Dialog’s
message) and data models (e.g., change the content of ArrayAdapter
that fits in between a ListView and an ArrayList). Instead, they should
designate the UI thread to handle GUI objects via Ul-safe methods
like Activity#runOnUiThread [40]. This rule is also enforced by many
GUI frameworks, e.g., Swing, SWT, Qt, and Cocoa.

® Rule 2 (Async threads should not create GUI components
in the background): The Ul thread by default is created with a
Handler and a Looper. The Handler enqueues events (e.g., messages
or runnable objects) into a message queue. These events come
from different app components and GUIs. The Looper dequeues and
dispatches the events to the Handler for processing. However, an
async thread (except HandlerThread) by default is not associated with
a Handler, thereby it should not directly create GUI components (e.g.,
Toast#show, Dialog#create) in the background. Instead, they should
post GUI creations via Ul thread’s Handler into Looper for processing.
Qt’s event loop and wxErlang’s mailbox queue enforce this similar rule.
® Rule 3 (Async threads should avoid accessing GUIs or per-
forming transactions inside async callbacks): Async callbacks
such as onPostExecute run on the UI thread, but they have no knowl-
edge of the current states of GUIs. Because they are called when
the async thread returns. As a result, accessing GUIs or performing
transactions for Fragments in async callbacks (e.g., AysncTask#onPost-
Execute, LoaderCallbacks#onLoadFinished) has the risks of sending
GUI updates to destroyed GUIs and losing app state [31]. Cocoa
Touch (GUI framework of i0S) also enforces this similar rule [6].
03: Do developers violate these rules? Are there any challenges
to solve such APEs? To answer this, we utilize Github and Google
Code APIs to scrawl the issue reports of 1091 apps that uses async
constructs in Q1. To identify APEs, we only collect issues that are
reported with exception traces, which contain the callbacks of async
constructs; then inspect their issue descriptions, comments, patches
if available to confirm valid issues that do violate the three rules.
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Figure 3: Workflow of APEChecker

Answer: We finally got 375 valid APE issues. The number of valid
issues is not large since many issues are reported without excep-
tion traces. It is reported only 16% Github issues have exception
traces [18]. But our evaluation (Section 5) reveals APEs affect more
than 25% apps. These issues violate the rules in different forms, in-
volving 9 different types of fatal exceptions, e.g., CalledFromWrongTh-
read, lllegalStateException, and BadTokenException. The violations of
Rule 1and 3 account for the majority in these 375 issues (91.2 %). By
investigating the fixing process of these APEs on Github, we note
developers face three main challenges: (1) Due to lack of adequate
understanding, they usually use simple try-catches to fix APEs; (2)
Many APEs reside in the releases since developers fail to discover
them during development; (3) Due to the lack of reproducing tests,
several developers complain about the difficulties of debugging.

2.3 Problem Definition

We name the errors that violate the three basic rules as aysnc pro-
gramming errors, and formulate our problem as follows.

UI thread. A Ul thread u is the main thread that is created when
an app starts, and manages GUI components.

Async thread. An async thread w is a worker thread that is in-
stantiated from an async construct (e.g., Thread), started by the Ul
thread (e.g., Thread#run), and executes a task.

Ul-accessing and UI-safe methods. A Ul-accessing method (i.e.,
Myiaccess) may create a GUI component (e.g., Toast#show), change
a GUI component’s state (e.g., Dialog#dismiss), or commit fragment
transactions. A Ul-safe method my;s4f. permits safe GUI access,
e.g., Activity#runOnUiThread, Handler#post, or GUI state check, e.g.,
Activity#isFinishing().

Program trace and its event sequence. A program trace t is a
sequence of method calls, mi,...,m;,...,mp, on the call graph
of an app. The event sequence s wr.t. t is a set of user events,
€1s---5€i,...,ex (k < susually holds), that can execute out ¢ under
the given environment E (e.g., thread scheduling, network status,
app permissions, sensor inputs and platform versions).

Problem Definition. Our problem is to check whether there exists
any trace ¢ on which u creates an async thread w, and w invokes
any Ul-accessing method that is not control-dependent on a Ul-safe
method. If ¢ exists, we find an event sequence [ that follows t to
exhibit the error under given environment E.

2.4 Prior Work

Prior work has only tackled parts of this problem. One close work
is from Zhang et al. [88], which finds invalid thread access errors
in Java GUI applications (Swing, SWT, Android), and gives warnings
in the form of method call chains. However, this work has several
significant differences from ours: First, they only handle a subset
of errors w.r.t. Rule 1, i.e, an async thread directly accesses GUI
components. Second, they use static analysis to check whether a
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thread spawning can reach a GUI object accessing method, which is
determined by the ViewRoot#checkThread method in ADF. This is ad
hoc and may miss many errors. Third, they do not confirm errors,
which may bring many false positives. In contrast, we conduct a sys-
tematic study to understand APEs, and combine static and dynamic
analysis to confirm errors with real tests. Lin et al. [54] investigate
the uses of AsyncTask, and observe the invalid thread access errors.
But they aim to solve another different problem of automatically
refactoring long-running tasks in UI thread into AysncTasks.
Another area of related work is detecting and reproducing con-
currency bugs (data race in particular) [10, 45, 52, 54, 59, 66, 80].
They treat some APEs w.r.t. Rule 3 as data races. For example, the
two APEs in Fig. 2 can be interpreted as data races since the mPanels
variable inside the framework class PhoneWindow can be accessed
simultaneously by the UI and async thread in which one access
is a write operation. Existing data race detection tools [10, 45, 59]
exploit dynamically explored event traces to build a happen-before
graph, and then query the graph to find potential data races. But
they have several limitations in practice to detect APEs: First, their
effectiveness heavily relies on the traces for building the graph. If
the traces have not fully covered app code, the detection ability
is limited. Second, they usually generate a large number of false
positives due to conservative analysis [47]. Existing data race repro-
ducing tools [66, 80] are also impractical since they either require
user-provided traces or depend on the results of data race detection
tools when confirming bugs. Section 5 compares APEChecker with
existing data race detection tools to confirm these observations.

3 OUR APPROACH APECHECKER

This section details our approach APEChecker. Figure 3 shows its
workflow, which is composed of five key steps: APEChecker (1)
summarizes a set of fault patterns from the collected APE issues, (2)
encodes these fault patterns into a static analyzer to locate faulty
code, (3) generates a set of program traces that can reach the faulty
code from the app entry, (4) maps the program traces into real event
sequences (tests) with appropriate environment; and (5) verifies
APEs with the tests, and dumps crash reports for fixing.

3.1 Fault Pattern Analysis

We categorize 375 APE issues into three groups w.r.t. the rules
summarized in the formative study. By analyzing these issues, we
characterize these APEs as three fault patterns.

e Fault Pattern 1:If an async thread w is started, and w calls a
Ul-access method myjgccess, which is not control-dependent on
a Ul-safe method my;s,f.. This pattern violates Rule 1, which is
represented as start(w) — — Myisafe = Muiaccess- Fig. 4 shows
such an error of Pedometer [17], an app that stores the user’s step

count per hour (the symbol “+” denotes the corresponding patch
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1 // privacy-friendly-pedometer. Revision: 9a031d6

2 public class MonthlyReportFragment extends Fragment{
3 private void generateReports(boolean updated){

4 AsyncTask.execute(new Runnable(){

5 public void run(){

6 if (mAdapter != null && ..){

7 + getActivity().runOnUiThread(new Runnable(){
8 + public void run(){

9

10 mAdapter.notifyDataSetChanged();

11

"
12 33315t
Figure 4: Example of Fault Pattern 1

1 // android_gisapp. Revision: 2ef12a7

2 // new ExportTask(..).execute();

3 public static class ExportTask extends AsyncTask<..>{
4 protected File doInBackground(Void. .. voids){

5 Cursor cursor = query(..);

6 if(cursor == null && ..){

7 Toast.makeText(msg).show();

8 + publishProgress();

9 i3

10 + protected void onProgressUpdate(Void... values){
11 + super.onProgressUpdate(values);

12 + Toast.makeText (mLayer.getContext()).show(); }
13 }

Figure 5: Example of Fault Pattern 2

to fix this error). In fragment MonthlyReportFragment, it starts an
aysnc thread to generate the monthly report and refresh the GUI
by invoking notifyDataSetChanged, which crashes the app.

e Fault Pattern 2: If an async thread w is started, and w calls a
GUI creation method myjcreare, Which is not posted on the UL
thread by mpos;100per to execute. This pattern violates Rule 2,
which is represented as start(w) = = Mpostiooper = Muicreate-
Fig. 5 shows such an error of gisapp [16], which is a user interface
controls library for Android geo applications (the symbols “+” and
“-” denote the corresponding patch to fix this error). gisapp uses
an async thread ExportTask to export the data by retrieving the
database, and use Toast#makeText to show a message if no data is
available. However, ExportTask has not referred to the UI thread’s
Handler to post messages, which crashes the app.

o Fault Pattern 3:1f an async thread w is started, and before w re-
turns, the target activity or fragment A is destroyed or stopped, and
after w returns, its async callback calls a Ul-access method myjgcess,
which is not control-dependent on a Ul-safe method my;sqf. This
pattern violates Rule 3, which is represented as start(w) — de-
stroy(A) or stop(A) — return(w) = = Mysqf e = Muiaccess- InFig. 2,
there are two such errors. When users rotate the screen right after
the start of the AsyncTasks SearchByPartName and DownloadDatasheet
but before they finish, the dismiss of mSearchDialog (Line 17) and
mDownloadDialog (Line 46) can crash the app.

3.2 Static Fault Detection

Algorithm 1 details static fault detection. It takes as input an app,
the lists of Ul-accessing and Ul-safe methods (summarized from
Android docs), and outputs the APE locations (including the start-
ing points of async threads). Algorithm 1 works on the static call
graph of an app, where each node denotes a method, and each edge
(f,g) denotes the call from the method f to g. We first identify all
method nodes that start async threads (Line 3) and check whether
the use of corresponding async constructs violate the rules (Lines
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Algorithm 1: Static Fault Detection

Input: apk: an Android app, uiAccessAPIs: list of Ul-access methods,
uiSafeAPIs: list of Ul-safe methods

Output: APEs: List<methodStartThread, stmtStartThread, methodAccessUI,
stmtAccessUI>

APEs « 0

cg « buildCallGraph(apk)

asyncStartNodes < getReachableAsyncStarts(cg)

foreach Node node € asyncStartNodes do

async « getAasyncClass(node)

o0 « getOverriddenMethods(async)

nodeList « getCalledMethodNodes(o, cg)

while nodeList # 0 do

node < nodeList.dequeue()

10 if isVisited(node) then

1 L continue

e N e MR W N R

12 if node € uiAccessAPIs then
13 if = controlDepdent(node, uiSaf e APIs) then
14 m « getCallingMethod(async)

n « getCallingMethod(node)

APEs « (m, async, n, node)

17 | nodeList.enqueue(getCalledMethodNodes(node, cg))

18 return APEs

4-17). For each aysnc construct, we get the overridden methods
according to its class type (Lines 5-6). Take AsyncTask as an exam-
ple, we consider its callback methods onPreExecute, doInBackground
and onPostExecute, etc. By querying the call graph, we gets all the
nodes called by these methods (Line 7). If a Ul-accessing method
node is not control-dependent on any Ul-safe methods (e.g., Ac-
tivity#runOnUiThread), this node will be tagged as suspicious APE
(Lines 12-16). Note that we conduct both intra- and inter-procedural
control-dependent analysis to reduce false alarms. Algorithm 1 also
checks the successor methods that are called by this node (Line 17)
to avoid false negatives.

Example. In Fig. 2, APEChecker identifies that searchByPartName
starts an AsyncTask, SearchByPartName. In the onPostExecute callback,
it locates a Ul-accessing method ProgressDialog#dismiss (Line 17),
which is not control-dependent on any Ul-safe methods, e.g., Activ-
ity#isFinishing(), to safely check activity state. So APEChecker reports
a suspicious APE.

3.3 Program Trace Generation

Algorithm 2 details the program trace generation (the idea is similar
to backward symbolic execution [56, 77]). It takes as input a target
method and statement (i.e., methodAccessUI and stmtAccessUI from
Algorithm 1), and returns the traces (i.e., method call sequences)
that can reach the APE. It starts with an empty trace ¢, and back-
tracks to reach the entry activity (Lines 5-30). Specifically, the max-
imum number of generated traces (MaxTraceCnt, Line 17) and the
maximum trace length ( MaxTraceLen, Line 5) is configurable.
During the analysis, each trace t may have one of the three
states, i.e., pending (¢ is under propagation), terminated (¢ reaches
the entry activity), failed (the propagation fails due to dead code
or limitations of static analysis tools). If no traces are pending,
the analysis stops (Lines 6-7). Otherwise, the analysis continues
until the maximum trace length is reached. At each iteration, the
algorithm uses two important variables, i.e., ptrMethod and ptrStmt,
pointing to the current backtrack point of . When t is pending, the
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algorithm queries the callers of t via getAcyclicCallers (we details
this function later). If there are no callers, ¢t will be set as failed due
to the propagation cannot proceed (Lines 12-14). Otherwise, we
update ptrMethod and ptrStmt of ¢ (Lines 16-26). Specifically, if ¢’s
ptrMethod has multiple callers, the algorithm will fork out a new
trace t” from ¢ (copying all previous backtrack information from ¢
to t’), and add ¢’ into the list of traces (Lines 16-22).

Here, updateTrace (Line 21 and 25) performs three operations:
(1) check whether t’s ptrMethod has reached the entry activity and
update t’s state accordingly. In particular, if ptrMethod is a callback
method (e.g., user event handler) of the entry activity, t will be
set as terminated. (2) update the method call chain of ¢ by adding
ptrMethod. The method call chain will be later used to generate
event sequences. (3) record the conditions in the body of ptrMethod
that ptrStmt are control-dependent on. These conditions will be
analyzed later to create necessary environment to improve the hit
rate. Section 3.4 will discuss the details of (2) and (3).

The function getAcyclicCallers queries and returns the immediate
callers of #’s ptrMethod. It removes the visited callers to ensure the
traces are acyclic. When backtrack, we differentiate three types of
call relations that widely exist in Android.

e Explicit Calls. The function f immediately calls function g, i.e.,
there exists an edge (f, g) on the call graph. For example, SearchBy-
PartName#dolnbackground is explicitly called by searchByPartName
via AsyncTask#execute (see Fig. 2).

e Implicit Calls. Android systems have many implicit calls through
its framework. An implicit call from function f to g indicates f calls
g asynchronously. For example, the callback onPostExecute of Search-
ByPartName is implicitly called when the callback doInbackground
returns (see Fig. 2).

o Inter-Component Transition Calls. Android system uses In-
tents to start activities or services. For example, in SearchByPart-
Name, the activity PartList is called by the callback onPostExecute
via startActivity (see Fig. 2).

Example. We explain Algorithm 2 on ADSdroid (Fig. 2). Algorithm 1
reports two suspicious faults, one of which is in the onPostExecute
callback, which dismisses mDownloadDialog without any Ul-safe
methods (Line 46). Algorithm 2 first initializes a pending trace,
whose ptrMethod is set as onPostExecute and ptrStmt as the dismiss
statement. It then finds dolnBackground is an implicit caller of on-
PostExecute (see ). Next, it finds onListitemClick explicitly calls
dolnBackground via execute (see @). Next, it finds the activity PartList
is called by SearchByPartName#onPostExecute (see ), and update
ptrMethod as onPostExecute and ptrStmt as the startActivity statement
(Line 21). Similarly, it finally finds the method searchByPartName
starts the SearchByPartName (see D). The final trace is searchByPart-
Name — onlListltemClick (only user event handlers are shown).

3.4 Event Sequence and Environment
Generation

This step converts the program traces from Section 3.3 into action-
able event sequences with appropriate environment.

Event Sequence Generation. APEChecker considers two main types
of callbacks when converting a program trace.

e User event handler callbacks. APEChecker maps each event han-
dler on the trace to a corresponding action wr.t. a Ul widget or
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Algorithm 2: Program Trace Generation

Input: method: the target method, stmt: the target statement
Output: traces: the list of candidate traces
let ¢ be an initially empty trace
let traceLen be the current trace length (initialized as 0)
t.ptrtMethod < method, t.ptrStmt « stm¢t
traces « {t}
while traceLen < MaxTraceLen do
if = hasPendingTrace(traces)then
L return traces

N w oA W N R

o

new_traces « {}

foreach Trace t € traces do

if isPending(t) then

// t is a pending trace

t.callers «— getAcyclicCallers(z.ptrMethod)

if t.callers == () then
// set t’s state as failed
updateTrace(?)

| continue

11
12

13
14

let ¢ be the first caller of ¢.callers
foreach Caller ¢’ € t.callers\{c} do
if count(traces) < MaxTraceCnt then
t’ « fork(t)
t’ ptrMethod « getMethod(c’)
t’ ptrStmt « getCallsite(c’)
updateTrace(’)
new_traces «— new_traces U {t'}

15
16

18
19
20
21
22

t.ptrtMethod « getMethod(c)
t.ptrStmt « getCallsite(c)
updateTrace(t)

new_traces < new_traces U {t}

23
24
25

26

else
L // t is a terminated or failed trace

27

28 new_traces < new_traces U {t}

traces « new_traces
traceLen < traceLen + 1

29

30

view. For example, in Fig. 2, the event handler onListltemClick(...)
is mapped to a click action on a ListView item; searchByPartName
(declared in the XML layout file) is mapped to a click action on
the “Search" button. To achieve this, APEChecker maintains a view-
handler mapping table, which supports event handler callbacks
registered in both app code and XML layouts [70, 75].

e Activity/Fragment lifecycle callbacks. For an activity or frag-
ment lifecycle callbacks (e.g., onRestart, onResume, onDestroy) on
the trace, APEChecker automatically substitutes the callback with
special events that can force app to execute it. For example, for
onRestart, APEChecker generates a long-press “Home” action (show
the list of recently-opened apps) followed by a touch action on this
app (switch back to the previous app again), triggering the lifecycle
transition onStop — onRestart; for onDestroy, APEChecker generates a
device-rotation event, triggering the transition onStop — onDestroy
— onStart. Currently, APEChecker considers Activity, Fragment and
other lifecycle-aware components (e.g., Loader).

Environment Generation. APEChecker automatically constructs
appropriate environment for event sequences. During the trace
generation, APEChecker records the control-dependent conditions
of an APE, and analyzes them to derive the environment. APEChecker
currently focuses on three types of environment, which we find
they can cover most of cases.
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e Specific user inputs. APEChecker tracks the constraints on user
inputs that can affect error verification. It currently supports two
lightweight strategies: (1) infer the required input formats (e.g.,
email address, phone number) from the property android:inputType
in the Ul layout files; and (2) track the intra-procedural data-flows
of inputs and infer the required contents by analyzing simple string
APIs (e.g., equal to a constant string, contain a specific character).
o Explicit system settings or permissions. APEChecker analyzes specific
APIs in the recorded conditions to infer necessary system settings
or permissions. For example, if =WifiManager#isWifiEnabled() is the
condition, APEChecker will disable WiFi before replaying the test; if
Camera#open() is the condition, APEChecker will grant the camera
access permission at runtime when required.
o Specific Exception Handling. Some APEs reside in exception han-
dling code, and they cannot be manifested without triggering the
corresponding exception. For example, if the APE can be only
reached by an I10Exception when the app fails to access a remote
server via network, APEChecker will disconnect the network before
replaying the test to simulate the exception. APEChecker only han-
dles specific cases of 10Exception (e.g., cannot access network or
files), but it can be extended to support other exceptions if required.
Currently, APEChecker supports limited environment (e.g., spe-
cific user inputs, network connection, camera access, file access) in
our evaluated subjects, and does not consider external events (e.g.,
sensor inputs and intents). The environment can be extended in
the future by using more sophisticated techniques like symbolic
analysis [69] and exception handling [87].

3.5 Error Verification

To confirm an APE, we replay the generated event sequence with
appropriate environment on the target app, and monitor the in-
tended 9 exception types via Android Debugging Bridge (adb logcat).
For those APEs whose manifestations require specific activity/frag-
ment state and thread scheduling (Fault Pattern 3 in particular), we
instrument the original app A to A’ by adding semaphore opera-
tions P (waiting) and V (release) at appropriate program locations.
For a suspicious faulty statement i in the callback of async thread
w, we insert a P operation (in the background callback) before i to
wait for a signal; at the right activity or fragment lifecycle callback
on the Ul thread U, we insert a V operation to send the signal. As a
result, we are able to control the thread scheduling and make sure
the scheduling happen at the right lifecycle state. Note that if an
app correctly follows the 3 async programming rules, the control
of thread scheduling will not introduce APEs or force the app to
crash. The instrumentation method only amplifies the possibility
of the long execution time to simulate real possible scenarios (e.g.,
delay of network access, wait of data download), and thus will not
introduce new behaviors or change original behaviors. Addition-
ally, the instrumentation locations depend on the fault types. For
example, to manifest activity state loss, the V operation will be
added in onStop since state loss always happens after onStop.
Example. The APE in SearchByPartName#onPostExecute in Fig 2 vi-
olates Rule 3. To manifest this error, APEChecker instruments a P
operation in the end of doInBackground, and instruments a V op-
eration at the beginning of SearchPanel#onDestroy. By doing this,
APEChecker can easily manifest this error by a two-event sequence,
i.e., click the “Search" button and rotate the screen.
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4 IMPLEMENTATION

APEChecker is implemented in Java (5K LOC) and Python (1K LOC),
and built on several existing tools to automatically manifest APEs.
It uses Soot [81] to build call graph, statically detects APEs based on
the three fault patterns, and generates program traces. When gen-
erating program traces, it extends IC3 [65] to handle inner classes,
fragments, and other public classes to reduce false negatives. It
currently considers acyclic traces, and sets the maximum number
of traces to 10 and maximum trace length to 20. It utilizes Gator [70]
(the GUIHierarchyPrinterClient client in particular) to set up the map-
ping relations between user event handlers and UI elements, and
converts the handlers (in the generated trace) to an event sequence
(e.g., click a button, choose an item in the list). The mapped UI ele-
ments usually have unique IDs or texts, which enables APEChecker
to interact with them. It now supports back, rotate, Home (send the
app to background), long-press-Home-and-back, Screen (screen on/off)
to tweak lifecycle. Apktool [14] instruments semaphore P/V op-
erations into the UI thread and async threads to control thread
scheduling. UlAutomator [26] is used to execute tests, and Android
Debugging Bridge (adb) [22] monitors whether the app throws the
intended 9 exception types.

5 EVALUATION

We applied APEChecker on 40 real-world Android apps, and com-
pared it with three state-of-the-art GUI testing tools (Monkey,
Sapienz, and Stoat), the Google official static analysis tool Lint, and
the state-of-the-art data race detection tool, EventRacer, to measure
its effectiveness. We aim to answer these research questions.

e RQ1: How effective is APEChecker for detecting APEs in Android
apps? Can Lint detect them?

e RQ2: How effective is APEChecker against existing GUI testing
techniques (Monkey, Sapienz, and Stoat) for APEs?

e RQ3: How effective is APEChecker against existing data race de-
tection techniques, for detecting specific types of APEs?

5.1 Evaluation Setup

Subjects. We choose subjects from (1) F-droid, the largest repository
for open-source apps; and (2) Google Play Store, the official app
store from Google. We crawled all 2097 unique apps from F-droid,
and 3107 popular apps from Google Play with over 10K installations.
Soot successfully processed 1654 F-droid apps and 2719 Google Play
apps. Among them, 930 F-droid apps and 1274 Google Play apps
use async constructs. Next, APEChecker identifies 866 APEs in 234
F-droid apps (25.2%=234/930) and 1161 APEs in 201 Google Play
apps (15.8%=201/1274) that contain suspicious APEs, respectively.
Environment. APEChecker runs on a 64-bit Ubuntu 14.04 machine
with 12 cores (3.50GHz Intel CPU) and 32GB RAM. We verify APEs
on both an Android emulator (SDK 4.4.2) and an LG Nexus 5X
mobile phone (SDK 7.1.1).

Studies. We conducted three case studies. In Study 1, we answer
RQ1. We need to manually analyze each reported APE, and deter-
mine the true positives and false positives, which requires a lot
of human efforts. Therefore, we randomly selected around 10% F-
droid and Google Play apps, respectively (the apps requiring user
credentials are excluded): (1) 25 F-droid apps from 234 suspicious
faulty apps, with 30374 executable lines of code (LOC) (in Jimple),
143 classes, 680 methods and 6 activities on average; and (2) 15
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Table 1: Subjects used in the experiment and evaluation results of APEChecker and Lint.

App Name H #ELOC ‘ #Classes | #Methods | #Activities #;E::; ( dt?:;?: d) ‘ (piﬁzii d4) ‘ #Repro. | #FP i?ll;let s?{ﬁlst
Open Manager 11477 56 227 6 1.0 2 2 2 0 3 0
ADSdroid 2310 17 60 2 1.0 2 2 2 0 3 0
DeskCon 11264 80 317 5 9.8 7 5 4 0 3 0
TuCanMobile 24264 113 494 10 3.6 2 2 2 0 3 0
RadioDroid 19248 109 443 2 2.8 3 1 1 2 3 0
filmChecker 2739 28 67 2 2.9 1 1 1 0 3 0
QuranForMyAndroid 14170 99 414 11 2.5 4 4 2 0 2,3 0
MoTAC 30857 135 748 6 1.8 3 2 2 0 2 0
MaximaOnAndroid 11357 43 211 4 2.5 2 2 2 0 3 0
DebianDroid 14133 88 413 3 3.1 8 0 0 0 - 0
NextGIS Mobile 12150 71 300 3 3.2 1 0 0 0 - 0
AZ2DP Volume 21502 115 555 6 3.7 6 6 5 0 2,3 0
Andor 87818 445 2198 19 3.0 4 3 3 1 3 0
Mitzuli 23615 135 517 2 3.4 2 1 1 0 3 0
Commons 32767 177 912 9 4.1 3 1 1 0 3 0
AdAway 21443 131 535 8 4.2 2 0 0 0 - 0
ServeStream 64366 300 1777 8 4.8 1 1 1 0 3 0
Navit 19336 69 360 3 1.7 2 0 0 1 - 0
JKU App 52654 223 1263 7 5.2 2 0 0 0 - 0
HomeManager 9184 54 185 2 1.8 1 1 1 0 0
Transports Bordeaux 21840 180 668 16 73 3 1 0 1 - 0
MTG Familiar 84544 341 1529 12 7.2 1 0 0 0 - 0
Cowsay 4149 22 92 1 1.1 1 1 1 0 1 1
AeonDroid 23037 128 604 4 3.6 3 1 1 0 3 0
Addi 138716 404 2119 2 1.4 1 0 0 0 - 0
Average 30374 143 680 6 3.5 2.8 - - - - -
MalayalamNewspaper 7093 51 181 4 8.2 1 1 1 0 3 0
Drum Solo 17819 80 270 4 2.6 1 0 0 0 - 0
Smart Poker 38835 219 1020 7 5.1 3 3 1 0 3 0
Lojas Renner 24758 210 756 11 5.6 1 1 1 0 3 0
Messaging 114001 446 3103 13 13.2 1 0 0 0 - 0
Recarga Vivo 61913 369 1809 25 13.8 1 0 0 0 - 0
InstaCartoonPhoto 1693 26 60 6 6.8 1 1 1 0 3 0
Fingerprint Lock 17833 123 475 13 6.9 1 0 0 0 - 0
Salmos 19527 110 402 4 5.9 2 2 2 0 3 0
Santander 166101 902 3457 5 9.8 3 2 1 0 3 0
Biblia Sagrada 41170 153 648 10 16.6 7 2 2 1 3 0
Trade Accounting 85485 450 2018 34 11.8 2 0 0 0 - 0
PremiumWallpaper 52156 203 1321 10 8.3 4 4 4 0 2,3 0
Tebak Lagu 23017 158 667 12 115 9 7 5 0 2,3 0
WorldNews Live24 104436 515 2298 10 19.8 3 1 1 0 3 0
Average 51722 267 1232 12 9.9 2.7 - - - - -

Google Play apps with 51722 LOC, 267 classes, 1232 methods and
12 activities on average, shown in Table 1. We measured the static
analysis time (the time of replay tests is omitted, since it only takes
a few seconds), the number of detected APEs, the number of APEs
that can be processed (limited by the abilities of Soot, IC3, Gator),
the number of APEs that can be reproduced (#Repro.), false posi-
tives (#FP), the types of faults, and the number of APEs that can be
detected by Lint.

In Study 2, we answer RQ2 by comparing APEChecker with Mon-
key, Sapienz, and Stoat, which have proven effectiveness on bug
detection [12, 60, 78]. 10 apps are randomly selected from 234 F-
droid apps that contain APEs. Each tool is allocated with one hour
with default settings. The number of confirmed (i.e., successfully
triggered) APEs, the analysis time and the length of tests (i.e., event
sequences) are recorded. From the perspective of their approach
workflow, all tools are given the original rather than the instru-
mented apps (cf. Section 3.5) as input to achieve fair comparison
— Monkey, Sapienz and Stoat do not require the instrumentation
for bug detection as their algorithms do not need instrumentation
(otherwise they may be adversely affected, e.g., stuck by the thread
scheduling), and also do not have idea of where to instrument. To
alleviate the randomness, we run each tool 10 times to average data.
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In Study 3, we answer RQ3 by comparing APEChecker with Even-
tRacer [10]. We did not choose other data race tools, e.g., CAFA [45]
(not available) and DroidRacer [29, 59] (less effecitve and precise
than EventRacer [10]). In detail, we (1) randomly selected 10 F-
droid apps (since the source code is required to confirm the APEs
reported by EventRacer, listed in Table 2) with at least one APE
of Fault Pattern 3 (treated as data races by EventRacer); (2) only
consider the races reported between UI thread and async threads;
and (3) allocated 10,000 events for EventRacer (by default, only
1,000 events) to generate event sequences, which on average costs
15 minutes per app (comparable to the running time of APEChecker).
EventRacer generates a lot of false positives, but to our knowledge,
no reproducing tools can facilitate our analysis: AsyncDroid [66] re-
quires user-provided event traces, RacerDroid [80] adopts manually
analysis and ERVA [47] is not available. Therefore, we manually
analyzed the races, and resorted to developers for confirmation.

5.2 Study 1: Effectiveness of Detecting APEs

Table 1 shows the results of APEChecker on the 40 apps. It identified
107 APEs in total with 67 and 40 from F-droid and Google Play apps,
respectively. Among them, due to the limitations of underlying tools,
61 APEs can be processed, of which 51 are successfully confirmed
with real tests, achieving 83.6% (51/61) hit rate. On average, it takes
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6.7 minutes for one app, with 3.5 minutes for one F-droid app and
9.9 minutes for one Google Play app. In contrast, Lint only detects
one APE, which is ineffective. We detail the results below.
Effectiveness. APEChecker successfully reproduces all APEs of Fault
Pattern 1. HomeManager manages and switches between home ap-
plications. Once started, it scans the installed apps on the device
in an async thread, which modifies the data list of app info asy-
chronously (with a ListView). When the scan is finished, it notifies
the Ul thread to refresh the ListView with the new list. However, if
the list is changed again (another async thread is created) during
the refresh, the app can be crashed by an IllegalStateException.

In Fault Pattern 2, MTG Familiar is an offline database app for
magic cards. It takes the photos of cards to identify the magic card.
After taking a photo, it starts loading the photo with a ProgressDialog
and calls Toast#¥makeText in an async thread. However, it fails to post
Toast creation onto the Ul thread, which causes a RuntimeException.

APEChecker successfully reproduces most APEs of Fault Pattern
3. For example, Mitzuli, a translator app, starts an async thread
to check version update, and shows a dialog to notify the results.
However, if users rotate the device before the thread returns, a fatal
BadTokenException occurs.

Hit Rate. APEChecker achieves an 83.6% (51/61) hit rate. We an-
alyzed the failed cases, and found most of them require special
constraints. We summarize the main scenarios below.

(1) External environment. Transports Bordeaux, a transportation app,
searches for paths from the starts to destinations. APEChecker can
generate a program trace but cannot generate an event sequence
to trigger the error, since the app registers a Broadcast Receiver
for receiving specific intents. APEChecker cannot infer this now.
QuranForMyAndroid is a translator for “The Quran". If “Back” button
is pressed after editting the text, it starts a thread to save the text
into storage and shows a message via Toast#makeText only when no
data storage is available. APEChecker cannot reproduce such errors.
(2) Complicated Exceptions. APEChecker currently cannot infer com-
plicated exceptions such as file not found and database corruption.
One APE in A2DP Volume is that it tries to show a message via
Toast#makeText in the exception handling’s catch statement which,
however, is only reachable when the database to be loaded is cor-
rupted in try statement.

False Positives. APEChecker only reports 6 false positives (5.6%=6/107).

The main reason is that some methods or classes are actually un-
reachable. For example, in RadioDroid, APEChecker identifies 3 po-
tential APEs, 2 of which are false positive since they reside in a
dead activity (ActivityRadioStationDetail) that cannot be started by
any other activities.

In summary, on the evaluated apps, APEChecker can efficiently mani-
fest APEs in a few minutes with 83.6% hit rate and 5.6% false alarms.

5.3 Study 2: Comparison with Testing Tools

Fig. 6 compares APEChecker and the three testing tools in the number
of confirmed APEs, the analysis time (in minutes) and the length of
event sequence (in logarithmic scale) that triggers the errors. The
results are presented in three bar plots with error bars (shown as
black lines), where each bar’s height indicates the average value,
and the error bar represents the standard deviation of uncertainty.

APEChecker confirms many more APEs than the testing tools. In
the 10 runs, APEChecker totally confirms 32 unique APEs from these
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Figure 6: Comparison between APEChecker and testing tools.

10 apps, while Monkey, Sapienz and Stoat, respectively, confirm 7, 8,
and 9. Moreover, none of the testing tools uncover APEs in subjects
9 and 10 while APEChecker finds 3 and 2 ones, respectively. The
error bars of testing tools show obvious data variance, i.e., testing
tools are very likely to miss APEs.

For the testing tools, the analysis time of an error is its first occur-
rence time since one error can be triggered multiple times during
one run. We can see APEChecker takes much less time than the
testing tools except for the subjects 4 and 7. On average, APEChecker
takes 2.9 minutes, while Monkey, Sapienz, and Stoat require 32.7,
14.3 and 37.1 minutes, respectively. Sapienz can easily hit one of the
errors in the subject 4 but take more time for the other twos. Stoat
takes less time on the subject 7, but only hits that APE once during
the 10 runs. Additionally, in terms of the event sequence length,
APEChecker provides shorter (more usable) tests than the testing
tools. The average event sequence length of Monkey, Sapienz, Stoat
and APEChecker is 35725, 411, 12, 4, respectively.

In summary, on the evaluated apps, APEChecker detects 3X more APEs
than testing tools, reduces detection time from half an hour to a few
minutes, and provides more usable reproducing tests.

5.4 Study 3: Comparison with EventRacer

Table 2 compares APEChecker and EventRacer on 10 F-droid apps in
the number of detected APEs. For EventRacer, we give the number
of reported data races and true positives under two configurations
(1K-event and 10K-event). To confirm true positives, we followed
the approach of EVRA [47] and remove duplicated races: if data
races are reported on different variables in ADF but refer to the same
location of app code, we treat them as one true positive. Because
the races actually indicate the same error in the app.

From Table 2, we can see APEChecker is more effective than Even-
tRacer for the specific APEs of Fault Pattern 3. APEChecker detects
and reproduces 32 out of 38 APEs while EventRacer (10K-event)
only finds 6 ones. By comparing the results between 1K-event and
10K-event, we can note the effectiveness of EventRacer heavily
depends on the number of given events. Although EventRacer can
detect 5 more APEs with 10K-event, it reports 14X more false posi-
tives, which overwhelms users. This is also observed by EVRA [47]
that only 3% data races reported by EventRacer are harmful. We also
observe that the reported races are highly random, which further
undermines its effectiveness for detecting these specfic APEs.
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Table 2: Comparison between APEChecker and EventRacer

A #APEs | APECh. EventRacer (1K) [ EventRacer (10K) ]
pp Name

(Patt.3) | #Repro. | #Reported | #TP | #Reported | #TP |
A2DPVolume 5 5 41 0 1249 1
TuCanMobile 2 2 12 0 53 0
OpenManager 2 2 0 0 27 1
Andor 4 3 0 0 0 0
Maxima 2 2 1 0 36 1
filmChecker 1 1 36 0 139 0
DeskCon 7 5 0 0 29 1
RadioDroid 3 1 15 1 48 1
ADSdroid 2 2 2 0 1 0
AnyMemo 10 9 19 0 206 1
Total 38 32 126 1 1788 6

In summary, on the evaluated apps, APEChecker detects 5X more APEs
than EventRacer on a specific APE type with very few false alarms.

5.5 Limitations and Threats to Validity

Limitations. APEChecker builds on several popular research tools,
i.e., Soot, IC3, and Gator, which represent the state-of-the-art. How-
ever, they still have several limitations in practice, which directly
fail APEChecker on program trace generation. For example, even if
Soot successfully processes an app, the call graph can still be incom-
plete (21.3% cases in our evaluation). Moreover, IC3 cannot handle
ICCs in inner classes or fragments, and Gator cannot handle third-
party UI controls. To counter this, we have already extended IC3
and Gator in these aspects (Section 4). But APEChecker still cannot
generate valid program traces for 46 APEs detected in the evalu-
ated apps (e.g., DebianDroid) due to the limitations of underlying
tools. We believe more engineering efforts on these tools can sig-
nificantly improve APEChecker. Additionally, APEChecker now only
infers simple environment, which lowers the hit rate. Future work
will integrate more sophisticated analysis techniques to overcome
this. Aditionally, applying APEChecker to detect APEs for other GUI
frameworks like Qt requires proper extensions [72].

Threats to Validity. APEChecker is only evaluated on 40 apps, and
thus our conclusion may not be general to all apps. The summarized
async programming rules and fault patterns may be incomplete,
and thus APEChecker may suffer from false negatives. But we have
thoroughly inspected all relevant resources, and the fault patterns
have covered all 375 real APEs from 1091 apps. To ease the verifica-
tion of APEs, APEChecker simulates specific execution environment
by controlling thread scheduling (e.g., increase the wait time of net-
work access). So some triggered APEs may not be easily manifested
by users although they are real faults under specific conditions.

6 RELATED WORK

Automated GUI Testing Many GUI testing techniques, e.g., ran-
dom testing [57], search-based testing [58, 60], symbolic execu-
tion [5, 63, 82], model-based testing [2, 3, 8, 11, 76, 78, 85] and
other approaches [61, 62, 75, 83], have been proposed for Android
apps. As we discussed in Section 1 and demonstrated in the evalua-
tion, these techniques are ineffective for APEs due to lack of prior
knowledge (fault patterns). In contrast, APEChecker leverages this
knowledge to efficiently manifest APEs.

APEChecker tackles specific bugs that violate the rules of single-
GUI-thread model. QUANTUM ([86] uses model-based testing to
tackle app-agnostic bugs. For example, when rotation happens,
the screen should show the same content and support the actions
as before. Thor [1] amplifies existing tests by randomly injecting
neutral event sequences (e.g., double rotation, pause-and-resume)
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that should not affect the outputs of original tests. Amalfitano
et al. [4] propose a similar idea by exhaustively injecting orientation
changes to expose GUI failures. However, these techniques may
not be effective for APEs. First, their effectiveness depends on the
quality of an existing GUI model or test suite, which are usually
not available [51]. Second, these techniques are random, and do not
explicitly consider the interactions between UI and aysnc threads.
Graziussi [44] encodes some specific patterns into Lint to detect
lifecycle bugs. KREfinder [74] finds restart-and-resume errors that
cause app data loss. APEChecker tackles APEs which have not been
systematically investigated before.

Concurreny Bugs As discussed in Section 2.4, some APEs can be
treated as concurrency bugs. To tackle them, a number of data race
detection tools [10, 45, 59, 71] and data race reproducing tools [47,
66, 80] are developed. However, as our evaluation shows, data race
detection tools are ineffective for these APEs. AsyncDroid [66]
and RacerDroid [80] are impractical since they either require user-
provided traces or depend on the results of data race detection
tools. ERVA [47] utilizes dependency graph and event flipping to
reproduce races, and uses state comparison techniques to identify
harmful ones. AATT [52] manifests concurrency bugs whose race
points at the app code level. However, it can only manifest races
whose conflicting events are in the same page or race points in
the user code. Other bug reproducing tools like RERAN [20] and
CrashScope [64] require user interactions. In contrast, APEChecker
automatically generates event sequences to verify APEs.

Guided Test Generation Our work uses static analysis to locate
suspicious APEs, and then guides GUI interactions to verify them.
This idea is also adopted in other application domains of Android.
SmartDroid [89] guides tests to reach certain APIs to manifest the
malicious behaviors. However, it explores every Ul element on each
page to find the right view to click. Brahmastra [9] drives apps to
reach third-party components to test security issues; MAMBA [50]
guides tests to reveal potential accesses to privacy-sensitive data;
FuzzDroid [69] utilizes a search-based algorithm combined with
static and dynamic analysis to manifest malicious behaviors. How-
ever, none of these tools can be directly compared with APEChecker
for detecting APEs. Other targeted testing tools include Collider [49],
ConDroid [73], A3E [8]. However, they are either not available or
requiring human intervention.

7 CONCLUSION

This paper introduces APEChecker, a technique to efficiently mani-
fest APEs. First, we conduct a formative study to understand the
aysnc programming rules implied by the single-GUI-thread model,
and collect a set of real APE issues. Second, informed by these
results, we distill three fault patterns, and locate suspicious APEs
via static fault pattern analysis, and then verify them with real tests.
The evaluation shows APEChecker is useful and effective.
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